Diameter perfect codes form a natural generalization for perfect codes. They are based on the code-anticode bound which generalizes the sphere-packing bound. The code-anticode bound was proved by Delsarte for distance-regular graphs and it holds for some other metrics too. In this paper we prove the bound for non-binary constant-weight codes with the Hamming metric and characterize the diameter perfect codes and the maximum size anticodes for these codes. We distinguish between six families of non-binary diameter constant-weight codes and four families of maximum size non-binary constant-weight anticodes. Each one of these families of diameter perfect codes raises some different questions. We consider some of these questions and leave lot of ground for further research. Finally, as a consequence, some t-intersecting families related to the well-known Erd\"{o}s-Ko-Rado theorem, are constructed.


翻译:直径完全代码构成完美代码的自然概括性。 它们基于将球体包装捆绑起来的代码反代码约束。 代码反代码约束由 Delsart 证明为远程常规图形, 并保留了其它的量度。 在本文中, 我们证明非二进制常量代码与Hamming 测量值具有约束性, 并描述这些代码的直径完美代码和最大尺寸的反代码。 我们区分了6个非二进制常量代码家族和4个最大尺寸非二进制常量反代码家族。 每个直径完美代码家族都提出了不同问题。 我们考虑这些问题, 留下许多地方供进一步研究。 最后, 一些与著名的Erd\{ {o}- Ko- Rodo 参数有关的跨式家庭已经建成。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
如何编写完美的 Python 命令行程序?
CSDN
5+阅读 · 2019年1月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
如何编写完美的 Python 命令行程序?
CSDN
5+阅读 · 2019年1月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员