The Shannon capacity of a graph is a fundamental quantity in zero-error information theory measuring the rate of growth of independent sets in graph powers. Despite being well-studied, this quantity continues to hold several mysteries. Lov\'asz famously proved that the Shannon capacity of $C_5$ (the 5-cycle) is at most $\sqrt{5}$ via his theta function. This bound is achieved by a simple linear code over $\mathbb{F}_5$ mapping $x \mapsto 2x$. This motivates the notion of linear Shannon capacity of graphs, which is the largest rate achievable when restricting oneself to linear codes. We give a simple proof based on the polynomial method that the linear Shannon capacity of $C_5$ is $\sqrt{5}$. Our method applies more generally to Cayley graphs over the additive group of finite fields $\mathbb{F}_q$, giving an upper bound on the linear Shannon capacity. We compare this bound to the Lov\'asz theta function, showing that they match for self-complementary Cayley graphs (such as $C_5$), and that the bound is smaller in some cases. We also exhibit a quadratic gap between linear and general Shannon capacity for some graphs.
翻译:图形的香农能力是测量图形能力独立组数增长率的零重度信息理论中的基本数量。 尽管这一数量得到了很好地研究, 但它仍然保留着几个奥秘。 Lov\'asz 著名地证明了香农能力$C_ 5$( 5- 周期) 通过其“ 函数” 最多为$\ sqrt{ 5 $。 这个约束是通过一个简单的线性代码来达到的, 该代码超过$\ mathbb{ F ⁇ 5$ 映射 $x\ mappsto 2x 美元。 这激励了直线性香农能力的概念, 这是在限制自己使用线性代码时可以达到的最大速度。 我们给出了一个简单的证据, 以多面方法为基础, 5美元( 5- 周期) 的香农能力是$\ sqrt{ 5 $。 我们的方法更一般地适用于Cay 的添加性图组, 使线性香农能力上有一个上限。 我们将此与Lov\'as theta compal 函数绑定了起来, $C 直径显示它们与直方图中的一些 Cxxx