To increase the ubiquity of machine learning it needs to be automated. Automation is cost-effective as it allows experts to spend less time tuning the approach, which leads to shorter development times. However, while this automation produces highly accurate architectures, they can be uninterpretable, acting as `black-boxes' which produce low conventional errors but fail to model the underlying input-output relationships -- the ground truth. This paper explores the use of the Fit to Median Error measure in machine learning regression automation, using evolutionary computation in order to improve the approximation of the ground truth. When used alongside conventional error measures it improves interpretability by regularising learnt input-output relationships to the conditional median. It is compared to traditional regularisers to illustrate that the use of the Fit to Median Error produces regression neural networks which model more consistent input-output relationships. The problem considered is ship power prediction using a fuel-saving air lubrication system, which is highly stochastic in nature. The networks optimised for their Fit to Median Error are shown to approximate the ground truth more consistently, without sacrificing conventional Minkowski-r error values.
翻译:提高机器学习的普及性需要自动化。 自动化具有成本效益, 因为它能让专家花较少的时间调整方法, 从而缩短开发时间。 但是, 虽然自动化能产生高度准确的结构, 但是它们可能是无法解释的, 作为“ 黑箱”, 产生较低的常规错误, 但却不能模拟基本的输入- 输出关系 -- -- 地面真相。 本文探索在机器学习回归自动化过程中使用“ 适应中位错误” 措施, 使用进化计算来改进地面真相的近似性。 在使用常规错误计量的同时, 它通过将学习过的输入- 输出关系与条件中位相规范来改进解释性。 它与传统的常规常规定律相比, 说明使用“ 适应媒体错误” 产生回归神经网络, 从而模拟更加一致的输入- 输出关系。 所考虑的问题是使用节省燃料的空气润滑系统来进行船舶动力预测, 该系统在性质上具有高度分解性。 选择适合中位错误的网络显示, 在不牺牲常规 Minkowskir 误差的情况下, 更一致地接近地面真相。