To increase the ubiquity of machine learning it needs to be automated. Automation is cost-effective as it allows experts to spend less time tuning the approach, which leads to shorter development times. However, while this automation produces highly accurate architectures, they can be uninterpretable, acting as `black-boxes' which produce low conventional errors but fail to model the underlying input-output relationships -- the ground truth. This paper explores the use of the Fit to Median Error measure in machine learning regression automation, using evolutionary computation in order to improve the approximation of the ground truth. When used alongside conventional error measures it improves interpretability by regularising learnt input-output relationships to the conditional median. It is compared to traditional regularisers to illustrate that the use of the Fit to Median Error produces regression neural networks which model more consistent input-output relationships. The problem considered is ship power prediction using a fuel-saving air lubrication system, which is highly stochastic in nature. The networks optimised for their Fit to Median Error are shown to approximate the ground truth more consistently, without sacrificing conventional Minkowski-r error values.


翻译:提高机器学习的普及性需要自动化。 自动化具有成本效益, 因为它能让专家花较少的时间调整方法, 从而缩短开发时间。 但是, 虽然自动化能产生高度准确的结构, 但是它们可能是无法解释的, 作为“ 黑箱”, 产生较低的常规错误, 但却不能模拟基本的输入- 输出关系 -- -- 地面真相。 本文探索在机器学习回归自动化过程中使用“ 适应中位错误” 措施, 使用进化计算来改进地面真相的近似性。 在使用常规错误计量的同时, 它通过将学习过的输入- 输出关系与条件中位相规范来改进解释性。 它与传统的常规常规定律相比, 说明使用“ 适应媒体错误” 产生回归神经网络, 从而模拟更加一致的输入- 输出关系。 所考虑的问题是使用节省燃料的空气润滑系统来进行船舶动力预测, 该系统在性质上具有高度分解性。 选择适合中位错误的网络显示, 在不牺牲常规 Minkowskir 误差的情况下, 更一致地接近地面真相。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员