Text summarization methods have attracted much attention all the time. In recent years, deep learning has been applied to text summarization, and it turned out to be pretty effective. However, most of the current text summarization methods based on deep learning need large-scale datasets, which is difficult to achieve in practical applications. In this paper, an unsupervised extractive text summarization method based on multi-round calculation is proposed. Based on the directed graph algorithm, we change the traditional method of calculating the sentence ranking at one time to multi-round calculation, and the summary sentences are dynamically optimized after each round of calculation to better match the characteristics of the text. In this paper, experiments are carried out on four data sets, each separately containing Chinese, English, long and short texts. The experiment results show that our method has better performance than both baseline methods and other unsupervised methods and is robust on different datasets.


翻译:文本总和方法一直引起人们的极大注意。 近年来,对文本总和应用了深层次的学习,结果证明非常有效。 但是,目前基于深层次学习的文本总和方法大多需要大型数据集,这在实际应用中难以实现。在本文中,根据多轮计算,提出了一种不受监督的抽取文本总和方法。根据定向图表算法,我们将一次计算句次的传统方法改为多轮计算,在每轮计算后,对摘要句子进行动态优化,以更好地匹配文本的特性。在本文中,对四个数据集进行了实验,每个数据集分别包含中文、英文、长篇和短篇文本。实验结果表明,我们的方法比基线方法和其他不受监督的方法都好,并且对不同的数据集非常可靠。

0
下载
关闭预览

相关内容

【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员