In the paper, we study a class of useful non-convex minimax optimization problems on the Riemanian manifold and propose a class of Riemanian gradient descent ascent algorithms to solve these minimax problems. Specifically, we propose a new Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that the RGDA has a sample complexity of $O(\kappa^2\epsilon^{-2})$ for finding an $\epsilon$-stationary point of the nonconvex strongly-concave minimax problems, where $\kappa$ denotes the condition number. At the same time, we introduce a Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization. In the theoretical analysis, we prove that the RSGDA can achieve a sample complexity of $O(\kappa^4\epsilon^{-4})$. To further reduce the sample complexity, we propose a novel momentum variance-reduced Riemannian stochastic gradient descent ascent (MVR-RSGDA) algorithm based on a new momentum variance-reduced technique of STORM. We prove that the MVR-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa^{4}\epsilon^{-3})$ without large batches, which reaches near the best known sample complexity for its Euclidean counterparts. This is the first study of the minimax optimization over the Riemannian manifold. Extensive experimental results on the robust deep neural networks training over Stiefel manifold demonstrate the efficiency of our proposed algorithms.


翻译:在论文中,我们研究了在里曼尼方块上一组有用的非隐形小型马克斯优化问题,并提议了一类里曼尼梯度梯度下移算法,以解决这些迷你马克斯问题。具体地说,我们提议了一种新的里曼尼梯度梯度下移(RGDA)算法,用于确定性小型马克斯优化。此外,我们证明RGDA的样本复杂性为$O (\kappa2\\eepsilón%2}),用于找到非康尼马克斯($epsilon$-固定点) 坚固的混凝土精度缩压缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩略图。在理论分析中,我们证明RSDA的样本复杂性可以达到$(\kapopia_clickral) 。为了进一步降低样本复杂性,我们建议Rlationaltialalalalalal-livestial rational MILA的变缩缩缩缩缩缩图。

0
下载
关闭预览

相关内容

【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
53+阅读 · 2020年8月16日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月25日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
0+阅读 · 2020年11月19日
Arxiv
0+阅读 · 2020年11月19日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
【优博微展2019】李志泽:简单快速的机器学习优化方法
清华大学研究生教育
14+阅读 · 2019年10月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员