The negative multinomial distribution appears in many areas of applications such as polarimetric image processing and the analysis of longitudinal count data. General formulas for the falling factorial moments of the negative multinomial distribution have been obtained in the past by Mosimann (1963), and similarly for cumulants by Withers & Nadarajah (2014). However, to the best of our knowledge, no one has ever calculated general formulas for the moments (although the moment generating function is known, see, e.g., Chapter~36 of Johnson et al. (1997), it is unpractical). In this paper, we fill this gap by providing general formulas for the central and non-central moments of the negative multinomial distribution in terms of binomial coefficients and Stirling numbers of the second kind. We use the formulas to give explicit expressions for all central moments up to the $4^{\text{th}}$ order and all non-central moments up to the $8^{\text{th}}$ order.
翻译:Mosimann(1963年)过去曾获得过负多数值分布的负因子时刻的通用公式,类似Westers & Nadarajah(2014年)的积分。然而,据我们所知,从未有人计算过这些时段的一般公式(尽管人们知道产生时间的功能,例如见Johnson等人的 ~36章(1997年),这是不实际的)。在本文中,我们通过以二进制系数和第二类的恒定数字提供负多数值分布中心和非中点时的通用公式来填补这一空白。我们用这些公式来明确表达所有中央时段直到 $4<unk> text{th $ 命令和所有非中央时段直到 $8<unk> text{th<unk> }{{{cn_}znational 顺序。</s>