Structured reporting (SR) and artificial intelligence (AI) may transform how radiologists interact with imaging studies. This prospective study (July to December 2024) evaluated the impact of three reporting modes: free-text (FT), structured reporting (SR), and AI-assisted structured reporting (AI-SR), on image analysis behavior, diagnostic accuracy, efficiency, and user experience. Four novice and four non-novice readers (radiologists and medical students) each analyzed 35 bedside chest radiographs per session using a customized viewer and an eye-tracking system. Outcomes included diagnostic accuracy (compared with expert consensus using Cohen's $\kappa$), reporting time per radiograph, eye-tracking metrics, and questionnaire-based user experience. Statistical analysis used generalized linear mixed models with Bonferroni post-hoc tests with a significance level of ($P \le .01$). Diagnostic accuracy was similar in FT ($\kappa = 0.58$) and SR ($\kappa = 0.60$) but higher in AI-SR ($\kappa = 0.71$, $P < .001$). Reporting times decreased from $88 \pm 38$ s (FT) to $37 \pm 18$ s (SR) and $25 \pm 9$ s (AI-SR) ($P < .001$). Saccade counts for the radiograph field ($205 \pm 135$ (FT), $123 \pm 88$ (SR), $97 \pm 58$ (AI-SR)) and total fixation duration for the report field ($11 \pm 5$ s (FT), $5 \pm 3$ s (SR), $4 \pm 1$ s (AI-SR)) were lower with SR and AI-SR ($P < .001$ each). Novice readers shifted gaze towards the radiograph in SR, while non-novice readers maintained their focus on the radiograph. AI-SR was the preferred mode. In conclusion, SR improves efficiency by guiding visual attention toward the image, and AI-prefilled SR further enhances diagnostic accuracy and user satisfaction.
翻译:暂无翻译