Matrix product operators allow efficient descriptions (or realizations) of states on a 1D lattice. We consider the task of learning a realization of minimal dimension from copies of an unknown state, such that the resulting operator is close to the density matrix in trace norm. For finitely correlated translation-invariant states on an infinite chain, a realization of minimal dimension can be exactly reconstructed via linear algebra operations from the marginals of a size depending on the representation dimension. We establish a bound on the trace norm error for an algorithm that estimates a candidate realization from estimates of these marginals and outputs a matrix product operator, estimating the state of a chain of arbitrary length $t$. This bound allows us to establish an $O(t^2)$ upper bound on the sample complexity of the learning task, with an explicit dependence on the site dimension, realization dimension and spectral properties of a certain map constructed from the state. A refined error bound can be proven for $C^*$-finitely correlated states, which have an operational interpretation in terms of sequential quantum channels applied to the memory system. We can also obtain an analogous error bound for a class of matrix product density operators on a finite chain reconstructible by local marginals. In this case, a linear number of marginals must be estimated, obtaining a sample complexity of $\tilde{O}(t^3)$. The learning algorithm also works for states that are sufficiently close to a finitely correlated state, with the potential of providing competitive algorithms for other interesting families of states.
翻译:暂无翻译