We study the probability and energy conservation properties of a leap-frog finite-difference time-domain (FDTD) method for solving the Schr\"odinger equation. We propose expressions for the total numerical probability and energy contained in a region, and for the flux of probability current and power through its boundary. We show that the proposed expressions satisfy the conservation of probability and energy under suitable conditions. We demonstrate their connection to the Courant-Friedrichs-Lewy condition for stability. We argue that these findings can be used for developing a modular framework for stability analysis in advanced algorithms based on FDTD for solving the Schr\"odinger equation.
翻译:我们研究了解决Schr\'odinger等式的跳式有限差异时间域(FDTD)方法的概率和节能特性。我们提出了一个区域所含总数值概率和能量的表达方式,以及通过其边界的概率流和电流的通量。我们表明提议的表达方式满足了在适当条件下的概率和节能。我们证明了它们与Curant-Friedrichs-Lewy条件的稳定性的联系。我们争辩说,这些发现可以用来为基于FDTD解决Sr\'odinger等式的先进算法制定稳定分析模块框架。