Target identification in brain-computer interface (BCI) spellers refers to the electroencephalogram (EEG) classification for predicting the target character that the subject intends to spell. When the visual stimulus of each character is tagged with a distinct frequency, the EEG records steady-state visually evoked potentials (SSVEP) whose spectrum is dominated by the harmonics of the target frequency. In this setting, we address the target identification and propose a novel deep neural network (DNN) architecture. The proposed DNN processes the multi-channel SSVEP with convolutions across the sub-bands of harmonics, channels, time, and classifies at the fully connected layer. We test with two publicly available large scale (the benchmark and BETA) datasets consisting of in total 105 subjects with 40 characters. Our first stage training learns a global model by exploiting the statistical commonalities among all subjects, and the second stage fine tunes to each subject separately by exploiting the individualities. Our DNN strongly outperforms the state-of-the-art on both datasets, by achieving impressive information transfer rates 265.23 bits/min and 196.59 bits/min, respectively, with only 0.4 seconds of stimulation. To our best knowledge, our rates are the highest ever reported performance results on these datasets. The code is available for reproducibility at https://github.com/osmanberke/Deep-SSVEP-BCI.


翻译:脑计算机界面( BCI) 拼写器中的目标识别符指的是用于预测对象要拼写的目标字符的电子脑图( EEG) 分类。 当每个字符的视觉刺激以不同频率标记时, EEG 记录了以目标频率的调和为主的大脑-计算机界面( ABCI) 目标识别目标, 并提议了一个全新的深神经网络架构。 拟议的 DNNN 处理多频道SSVP 的多频道 SSVEP, 其组合横跨调音频、 频道、 时间和 完全连接层的分类。 我们用两种公开的大型( 基准和 ETA) 数据集进行测试, 由总共105个主题和40个字符组成。 我们的第一阶段培训通过利用所有主题之间的统计共性来学习一个全球模型, 以及第二个阶段的精细调, 利用个人特性。 我们的 DNNEW 大大超越了两个数据集的状态, 通过实现令人印象深刻的信息传输率/ 最高的数据传输率 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
专知会员服务
61+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员