Motion blur in dynamic scenes is an important yet challenging research topic. Recently, deep learning methods have achieved impressive performance for dynamic scene deblurring. However, the motion information contained in a blurry image has yet to be fully explored and accurately formulated because: (i) the ground truth of dynamic motion is difficult to obtain; (ii) the temporal ordering is destroyed during the exposure; and (iii) the motion estimation from a blurry image is highly ill-posed. By revisiting the principle of camera exposure, motion blur can be described by the relative motions of sharp content with respect to each exposed position. In this paper, we define exposure trajectories, which represent the motion information contained in a blurry image and explain the causes of motion blur. A novel motion offset estimation framework is proposed to model pixel-wise displacements of the latent sharp image at multiple timepoints. Under mild constraints, our method can recover dense, (non-)linear exposure trajectories, which significantly reduce temporal disorder and ill-posed problems. Finally, experiments demonstrate that the recovered exposure trajectories not only capture accurate and interpretable motion information from a blurry image, but also benefit motion-aware image deblurring and warping-based video extraction tasks. Codes are available on https://github.com/yjzhang96/Motion-ETR.


翻译:动态场景中的运动模糊不清是一个重要而又具有挑战性的研究主题。最近,深层学习方法已经取得了动态场景的令人印象深刻的性能。然而,模糊图像中的运动信息尚未得到充分探索和准确的表述,因为:(一) 动态运动的地面真相难以获得;(二) 时间定序在暴露期间被摧毁;(三) 从模糊图像中得出的运动估计是非常不正确的。通过重新审视摄像接触原则,运动模糊可以用每个暴露位置的尖锐内容的相对动作来描述。在本文中,我们定义了暴露轨迹,它代表着模糊图像中的运动信息,并解释了运动的原因模糊。提出了一个新的移动抵消估计框架,以模拟像素为根据,在多个时间点将潜在锐利图像移位;在轻微的制约下,我们的方法可以恢复稠密的(非线性)暴露轨迹,这大大减少了时间性失调和不易感测的问题。最后,实验表明,回收的暴露轨迹轨迹不仅能够捕捉到准确和可解释的移动图象/可理解的移动任务。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
NIPS 2018 | 轨迹卷积网络 TrajectoryNet
极市平台
8+阅读 · 2019年2月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员