Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic MultiGrid (AMG) preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability, and robustness on extreme-scale problems. The main novelty is the design and implementation of a parallel coarsening algorithm based on aggregation of unknowns employing weighted graph matching techniques; this is a completely automated procedure, requiring no information from the user, and applicable to general symmetric positive definite (s.p.d.) matrices. The new coarsening algorithm improves in terms of numerical scalability at low operator complexity over decoupled aggregation algorithms available in previous releases of the package. The preconditioners package is built on the parallel software framework \texttt{PSBLAS}, which has also been updated to progress towards exascale. We present weak scalability results on one of the most powerful supercomputers in Europe, for linear systems with sizes up to $O(10^{10})$ unknowns.


翻译:大型和稀疏系统的线性求解器是科学应用的一个关键要素,要利用当前计算机的计算能力,就必须高效地实施这些系统。 代数多Grid(AMG)先决条件(AMG)是这类线性求解器的流行成份; 这正是目前工作的动力,我们在这里审查一个大型和稀疏系统的线性求解器软件包中最近的一些发展,以提高对极端规模问题的效率、可缩放性和稳健性。 主要的新颖之处是设计和实施一个以使用加权图表匹配技术的未知数据汇总为基础的平行粗化算法; 这是一个完全自动化的程序,不需要用户提供信息,而适用于一般的正对称确定(s.p.d.)矩阵。 新的粗略分析算法在操作员的低复杂度上提高了数字的可缩缩缩性,超过软件包以前发布时可用的拆分解集算法。 先决条件软件包建在平行的软件框架\ textt{PSBLAS} 上,该软件框架也被更新为向伸缩的进展。 我们对欧洲最强大的一个最强的超级计算机10美元至10美元的系统提供了较弱的可缩缩缩缩。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员