Linear solvers for large and sparse systems are a key element of scientific applications, and their efficient implementation is necessary to harness the computational power of current computers. Algebraic MultiGrid (AMG) preconditioners are a popular ingredient of such linear solvers; this is the motivation for the present work where we examine some recent developments in a package of AMG preconditioners to improve efficiency, scalability, and robustness on extreme-scale problems. The main novelty is the design and implementation of a parallel coarsening algorithm based on aggregation of unknowns employing weighted graph matching techniques; this is a completely automated procedure, requiring no information from the user, and applicable to general symmetric positive definite (s.p.d.) matrices. The new coarsening algorithm improves in terms of numerical scalability at low operator complexity over decoupled aggregation algorithms available in previous releases of the package. The preconditioners package is built on the parallel software framework \texttt{PSBLAS}, which has also been updated to progress towards exascale. We present weak scalability results on one of the most powerful supercomputers in Europe, for linear systems with sizes up to $O(10^{10})$ unknowns.
翻译:大型和稀疏系统的线性求解器是科学应用的一个关键要素,要利用当前计算机的计算能力,就必须高效地实施这些系统。 代数多Grid(AMG)先决条件(AMG)是这类线性求解器的流行成份; 这正是目前工作的动力,我们在这里审查一个大型和稀疏系统的线性求解器软件包中最近的一些发展,以提高对极端规模问题的效率、可缩放性和稳健性。 主要的新颖之处是设计和实施一个以使用加权图表匹配技术的未知数据汇总为基础的平行粗化算法; 这是一个完全自动化的程序,不需要用户提供信息,而适用于一般的正对称确定(s.p.d.)矩阵。 新的粗略分析算法在操作员的低复杂度上提高了数字的可缩缩缩性,超过软件包以前发布时可用的拆分解集算法。 先决条件软件包建在平行的软件框架\ textt{PSBLAS} 上,该软件框架也被更新为向伸缩的进展。 我们对欧洲最强大的一个最强的超级计算机10美元至10美元的系统提供了较弱的可缩缩缩缩。