Propelled by multi-user MIMO (MU-MIMO) technology, unmanned aerial vehicles (UAVs) as mobile hotspots have recently emerged as an attractive wireless communication paradigm. Rate adaptation (RA) becomes indispensable to enhance UAV communication robustness against UAV mobility-induced channel variances. However, existing MU-MIMO RA algorithms are mainly designed for ground communications with relatively stable channel coherence time, which incurs channel measurement staleness and sub-optimal rate selections when coping with highly dynamic air-to-ground links. In this paper, we propose SensRate, a new uplink MU-MIMO RA algorithm dedicated for low-altitude UAVs, which exploits inherent onboard sensors used for flight control with no extra cost. We propose a novel channel prediction algorithm that utilizes sensor-estimated flight states to assist channel direction prediction for each client and estimate inter-user interference for optimal rates. We provide an implementation of our design using a commercial UAV and show that it achieves an average throughput gain of 1.24\times and 1.28\times compared with the bestknown RA algorithm for 2- and 3-antenna APs, respectively


翻译:由多用户MIMIM(MIMIM)(MM-MIM(MIMIM))技术推导,无人驾驶飞行器(UAVs)作为流动热点,最近成为具有吸引力的无线通信范例,因此,移动热点的无人驾驶飞行器(UAVs)最近成为具有吸引力的无线通信范例。调速(RA)对于提高UAV对无人驾驶飞行器移动导致的通道差异的通信强度是不可或缺的。然而,现有的MU-MIMIM RA算法主要为地面通信设计,使用相对稳定的频道协调时间,在应对高度动态的空对地连接时,产生频道测量失灵和亚最佳速率选择。在本文中,我们建议SensRate(SensRate)将新的MMM-MIMIM RA算法连接到新的低空空无人驾驶飞行器,该算法利用机上固有的遥控传感器进行飞行控制,不增加费用。我们提出了一个新的频道预测算法,利用传感器估计的飞行状态状态,协助每个客户对航道方向作出预测,并估计最佳速率。我们使用商业无人机压压系统的设计,并显示其平均通过量增加1.24小时和1.28时间和1.28时间。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员