This paper introduces a method for the nonparametric Bayesian learning of nonlinear operators, through the use of the Volterra series with kernels represented using Gaussian processes (GPs), which we term the nonparametric Volterra kernels model (NVKM). When the input function to the operator is unobserved and has a GP prior, the NVKM constitutes a powerful method for both single and multiple output regression, and can be viewed as a nonlinear and nonparametric latent force model. When the input function is observed, the NVKM can be used to perform Bayesian system identification. We use recent advances in efficient sampling of explicit functions from GPs to map process realisations through the Volterra series without resorting to numerical integration, allowing scalability through doubly stochastic variational inference, and avoiding the need for Gaussian approximations of the output processes. We demonstrate the performance of the model for both multiple output regression and system identification using standard benchmarks.
翻译:本文介绍了一种方法,通过使用使用Gaussian进程(GPs)代表内核的Volterra系列,对非线性操作员进行非参数贝尼西亚学习。我们用Gaussian进程(GPs)来表示,我们称之为非参数Volterra内核模型(NVKM)。当对操作员的输入功能未观测到,且在GPS之前有一个GP之前,NVKM是单一和多重输出回归的强大方法,可被视为非线性和非线性潜在力量模型。当观察到输入功能时,NVKM可用于进行Bayesian系统识别。我们使用近期在高效地取样GPs明确功能方面的进展,在不使用数字集成的情况下绘制通Volterra系列的流程实现情况,允许通过双向随机变异推法变推算,使输出过程不需用高斯近似法进行伸缩。我们用标准基准来证明多输出回归和系统识别模式的性。