Charting the baby connectome evolution trajectory during the first year after birth plays a vital role in understanding dynamic connectivity development of baby brains. Such analysis requires acquisition of longitudinal connectomic datasets. However, both neonatal and postnatal scans are rarely acquired due to various difficulties. A small body of works has focused on predicting baby brain evolution trajectory from a neonatal brain connectome derived from a single modality. Although promising, large training datasets are essential to boost model learning and to generalize to a multi-trajectory prediction from different modalities (i.e., functional and morphological connectomes). Here, we unprecedentedly explore the question: Can we design a few-shot learning-based framework for predicting brain graph trajectories across different modalities? To this aim, we propose a Graph Multi-Trajectory Evolution Network (GmTE-Net), which adopts a teacher-student paradigm where the teacher network learns on pure neonatal brain graphs and the student network learns on simulated brain graphs given a set of different timepoints. To the best of our knowledge, this is the first teacher-student architecture tailored for brain graph multi-trajectory growth prediction that is based on few-shot learning and generalized to graph neural networks (GNNs). To boost the performance of the student network, we introduce a local topology-aware distillation loss that forces the predicted graph topology of the student network to be consistent with the teacher network. Experimental results demonstrate substantial performance gains over benchmark methods. Hence, our GmTE-Net can be leveraged to predict atypical brain connectivity trajectory evolution across various modalities. Our code is available at https: //github.com/basiralab/GmTE-Net.


翻译:在出生后第一年绘制婴儿连接进化轨迹图在理解婴儿大脑动态连通性发展中发挥着关键作用。这种分析需要获得纵向连通性数据集。 但是,由于各种困难,新生儿和产后扫描都很少获得。 一小堆工作侧重于预测从单一模式产生的新生儿大脑连接体中婴儿大脑进化轨迹。虽然很有希望,但大型培训数据集对于促进模型学习和从不同模式(例如,网络、功能和形态连接体)对多轨预测至关重要。在这里,我们前所未有地探索的问题:我们能否设计一个几张基于学习的框架,用于预测不同模式的脑图轨迹轨迹?为了这个目的,我们提议了一个多轨图进化进化网络(GmTE-Net)的图表图示性模型,教师网络可以学习纯净的新生儿大脑图表,学生网络可以学习模拟的脑图(例如,网络的功能和形态相形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形色色色色的大脑图)。我们的知识,这是第一个基于教师- 轨迹直径形形形色直径直径直径直径直径直径直径直径直径直径直径直径直图的网络的进图的系统图的进动的系统图,我们大脑网络的进图,我们大脑网络的系统图的系统图图图图图图图图图,可以调整的系统图图,可以用来用来用来用来用来用来用来在大脑进化图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式图式

1
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
Top
微信扫码咨询专知VIP会员