We develop an efficient sampling approach for handling complex missing data patterns and a large number of missing observations in conditionally Gaussian state space models. Two important examples are dynamic factor models with unbalanced datasets and large Bayesian VARs with variables in multiple frequencies. A key insight underlying the proposed approach is that the joint distribution of the missing data conditional on the observed data is Gaussian. Moreover, the inverse covariance or precision matrix of this conditional distribution is sparse, and this special structure can be exploited to substantially speed up computations. We illustrate the methodology using two empirical applications. The first application combines quarterly, monthly and weekly data using a large Bayesian VAR to produce weekly GDP estimates. In the second application, we extract latent factors from unbalanced datasets involving over a hundred monthly variables via a dynamic factor model with stochastic volatility.
翻译:我们为处理复杂的缺失数据模式和在有条件的高斯州空间模型中大量缺失观测开发了高效的抽样方法,其中两个重要例子是不平衡数据集的动态要素模型和具有多频率变量的大型贝叶西亚VARs。拟议方法的一个关键见解是,以观察数据为条件的缺失数据联合分配是高斯语。此外,这种有条件分布的逆差或精确矩阵很少,这种特殊结构可以用来大大加快计算速度。我们用两种经验应用来说明这一方法。第一个应用组合了季度、月和每周数据,使用大巴伊西亚VAR来编制每周GDP估计数。在第二个应用中,我们通过具有随机波动性的动态要素模型,从涉及每月100多个变量的不平衡数据集中提取潜在因素。