In this paper we propose and analyze new efficient sparse approximate inverse (SPAI) smoothers for solving the two-dimensional (2D) and three-dimensional (3D) Laplacian linear system with geometric multigrid methods. Local Fourier analysis shows that our proposed SPAI smoother for 2D achieves a much smaller smoothing factor than the state-of-the-art SPAI smoother studied in [Bolten, M., Huckle, T.K. and Kravvaritis, C.D., 2016. Sparse matrix approximations for multigrid methods. Linear Algebra and its Applications, 502, pp.58-76.]. The proposed SPAI smoother for 3D cases provides smaller optimal smoothing factor than that of weighted Jacobi smoother. Numerical results validate our theoretical conclusions and illustrate the high-efficiency and high-effectiveness of our proposed SPAI smoothers. Such SPAI smoothers have the advantage of inherent parallelism. The MATLAB codes for implementing our proposed algorithms are publicly available online at http://github.com/junliu2050/SPAI-MG-Laplacian .
翻译:在本文中,我们提出并分析了新的高效稀薄的反向近似(SPAI)光滑剂,用几何多格方法解决二维(2D)和三维(3D)拉普拉西亚线性系统。当地的Fourier分析表明,我们提议的SPAI2D光滑剂的滑滑剂比[Bolten, M., Huckle, T.K. 和Kravvaritis, C.D., 2016年。多格方法的松散矩阵近似值。Linear Algebra及其应用, 502, pp. 58-76。]拟议的3D案件SPAI光滑剂提供了比加权的Jacobi光滑剂更小的最佳滑动因素。数字结果证实了我们的理论结论并说明了我们拟议的SPAI光滑剂的高效率和高效益。这些SPAI光滑剂具有内在的平行性优势。执行我们提议的运算法的MATLAB代码可在网上公开查阅 http://github.com/junliu20/SPAI-MGMG-LALAplace。