In recent years, research on adversarial attacks has become a hot spot. Although current literature on the transfer-based adversarial attack has achieved promising results for improving the transferability to unseen black-box models, it still leaves a long way to go. Inspired by the idea of meta-learning, this paper proposes a novel architecture called Meta Gradient Adversarial Attack (MGAA), which is plug-and-play and can be integrated with any existing gradient-based attack method for improving the cross-model transferability. Specifically, we randomly sample multiple models from a model zoo to compose different tasks and iteratively simulate a white-box attack and a black-box attack in each task. By narrowing the gap between the gradient directions in white-box and black-box attacks, the transferability of adversarial examples on the black-box setting can be improved. Extensive experiments on the CIFAR10 and ImageNet datasets show that our architecture outperforms the state-of-the-art methods for both black-box and white-box attack settings.


翻译:近些年来,关于对抗性攻击的研究已成为热点。尽管目前关于以转移为基础的对抗性攻击的文献在改进向隐蔽黑盒模式的可转移性方面取得了可喜的成果,但仍任重道远。在元学习理念的启发下,本文提出了名为Meta Gradient Aversarial Attack(MGAAA)的新结构,这是一个插座和游戏,可以与现有的任何基于梯度的攻击方法相结合,以改进跨模范转移性。具体地说,我们随机抽样从一个模型动物园抽取多个模型,以组成不同的任务,并反复模拟白盒攻击和黑盒攻击。通过缩小白盒攻击中的梯度方向和黑盒攻击之间的鸿沟,黑盒设置上的对抗性例子的可转移性可以改进。关于CIFAR10和图像网络数据集的广泛实验显示,我们的架构超越了黑盒和白盒攻击环境的最先进方法。

1
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
5+阅读 · 2021年6月27日
专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
5+阅读 · 2020年6月16日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
专知会员服务
5+阅读 · 2021年6月27日
专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员