In a recent paper, Brakensiek, Gopi and Makam introduced higher order MDS codes as a generalization of MDS codes. An order-$\ell$ MDS code, denoted by $\operatorname{MDS}(\ell)$, has the property that any $\ell$ subspaces formed from columns of its generator matrix intersect as minimally as possible. An independent work by Roth defined a different notion of higher order MDS codes as those achieving a generalized singleton bound for list-decoding. In this work, we show that these two notions of higher order MDS codes are (nearly) equivalent. We also show that generic Reed-Solomon codes are $\operatorname{MDS}(\ell)$ for all $\ell$, relying crucially on the GM-MDS theorem which shows that generator matrices of generic Reed-Solomon codes achieve any possible zero pattern. As a corollary, this implies that generic Reed-Solomon codes achieve list decoding capacity. More concretely, we show that, with high probability, a random Reed-Solomon code of rate $R$ over an exponentially large field is list decodable from radius $1-R-\epsilon$ with list size at most $\frac{1-R-\epsilon}{\epsilon}$, resolving a conjecture of Shangguan and Tamo.


翻译:在最近的一篇论文中,Brakensiek,Gopi和Makam将高阶MDS码作为MDS码的一般化。 $\ell$阶MDS码,表示为$\operatorname{MDS}(\ell)$,具有的性质是其生成矩阵的任意$\ell$个形成的子空间之间的交集尽可能小。 Roth提出的独立作品则定义了另一种高阶MDS码的概念,即那些实现列表译码的广义单例限。在这项工作中,我们表明这两种高阶MDS码的概念是(近乎)等价的。我们还表明,通用Reed-Solomon码对于所有$\ell$都是$\operatorname{MDS}(\ell)$,具有GM-MDS定理的关键作用,该定理表明,通用Reed-Solomon码的生成矩阵实现任何可能的零模式。作为推论,这意味着通用Reed-Solomon码实现列表译码容量。更具体地说,我们表明,在指数级别的大字段上,比率为R的随机Reed-Solomon码在半径为$1-R-\epsilon$时可以被有高概率列表译码,列表大小最多为$\frac{1-R-\epsilon}{\epsilon}$,解决了Shangguan和Tamo的一个猜想。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Flutter 组件: Autocomplete 自动填充 | 开发者说·DTalk
谷歌开发者
0+阅读 · 2022年10月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Flutter 组件: Autocomplete 自动填充 | 开发者说·DTalk
谷歌开发者
0+阅读 · 2022年10月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员