Kernel methods are learning algorithms that enjoy solid theoretical foundations while suffering from important computational limitations. Sketching, which consists in looking for solutions among a subspace of reduced dimension, is a well studied approach to alleviate these computational burdens. However, statistically-accurate sketches, such as the Gaussian one, usually contain few null entries, such that their application to kernel methods and their non-sparse Gram matrices remains slow in practice. In this paper, we show that sparsified Gaussian (and Rademacher) sketches still produce theoretically-valid approximations while allowing for important time and space savings thanks to an efficient \emph{decomposition trick}. To support our method, we derive excess risk bounds for both single and multiple output kernel problems, with generic Lipschitz losses, hereby providing new guarantees for a wide range of applications, from robust regression to multiple quantile regression. Our theoretical results are complemented with experiments showing the empirical superiority of our approach over SOTA sketching methods.


翻译:内核方法是一种学习算法,它既具有坚实的理论基础,又受到重要的计算限制。切入法(它包含在一个低维的子空间中寻找解决办法)是经过周密研究的减轻这些计算负担的方法。然而,在统计学上准确的草图,例如高山法,通常只有很少的空条目,因此它们适用于内核法及其非抽取的粗格矩阵在实践中仍然缓慢。在本文中,我们显示,加固高山(和雷德马赫)草图仍然产生具有理论价值的近似值,同时由于高效的 \emph{decomposition trick}而允许重要的时间和空间节约。为了支持我们的方法,我们为单项和多个输出内核问题,加上通用的Lipschitz损失,产生了超风险界限,从而为从强的回归到多重四分回归的广泛应用提供了新的保障。我们理论结果得到了实验的补充,表明我们的方法比SOTA的草图方法具有经验上的优越性。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
93+阅读 · 2022年8月2日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
13+阅读 · 2021年3月29日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员