We revisit the \textsc{$k$-Secluded Tree} problem. Given a vertex-weighted undirected graph $G$, its objective is to find a maximum-weight induced subtree $T$ whose open neighborhood has size at most $k$. We present a fixed-parameter tractable algorithm that solves the problem in time $2^{\mathcal{O}(k \log k)}\cdot n^{\mathcal{O}(1)}$, improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a $k$-secluded tree by branching on vertices in the open neighborhood of the current tree $T$. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any $k$-secluded supertree $T' \supseteq T$ once the open neighborhood of $T$ becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight $k$-secluded trees, which allows us to count the number of maximum-weight $k$-secluded trees containing a specified vertex in the same running time.
翻译:我们重新审视了 \ textsc{ $k$- seclose Tree} 问题。 鉴于一个顶端加权的非方向图形$G$, 目标是找到一个最大重量引导子树$T$, 开放区面积以美元为单位。 我们提出了一个固定参数可移动算法, 能够及时解决该问题 $ ⁇ mathcal{O}( k k k)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \