In this paper, we prove that separable negative log-likelihood losses for structured prediction are not necessarily Bayes consistent, or, in other words, minimizing these losses may not result in a model that predicts the most probable structure in the data distribution for a given input. This fact opens the question of whether these losses are well-adapted for structured prediction and, if so, why.
翻译:在本文中,我们证明结构化预测的可分离的负日志可能性损失不一定一致,或者,换句话说,最大限度地减少这些损失可能不会形成一种模型,预测某一投入的数据分配中最可能的结构。 这一事实引发了这些损失是否适合结构化预测以及如果适合,为什么。