Game theoretic methods have become popular for planning and prediction in situations involving rich multi-agent interactions. However, these methods often assume the existence of a single local Nash equilibria and are hence unable to handle uncertainty in the intentions of different agents. While maximum entropy (MaxEnt) dynamic games try to address this issue, practical approaches solve for MaxEnt Nash equilibria using linear-quadratic approximations which are restricted to unimodal responses and unsuitable for scenarios with multiple local Nash equilibria. By reformulating the problem as a POMDP, we propose MPOGames, a method for efficiently solving MaxEnt dynamic games that captures the interactions between local Nash equilibria. We show the importance of uncertainty-aware game theoretic methods via a two-agent merge case study. Finally, we prove the real-time capabilities of our approach with hardware experiments on a 1/10th scale car platform.
翻译:在涉及富富多剂相互作用的情况下,游戏理论方法在规划和预测中变得很受欢迎。然而,这些方法往往假定存在单一的本地Nash均衡,因此无法处理不同代理商意图中的不确定性。尽管最大对流(MaxEnt)动态游戏试图解决这一问题,但使用线性赤道近似方法解决MaxEnt Nash均衡的实用方法,这些方法仅限于单方反应,并且不适合于多个本地Nash平衡的情景。通过重新将问题改写为POMDP,我们提出了MPOGame,这是高效解决MaxEnt动态游戏的一种方法,它捕捉到本地Nash equilibria之间的相互作用。我们通过双试合并案例研究展示了不确定性游戏理论方法的重要性。最后,我们证明了我们在1/10规模的汽车平台上进行硬件实验的方法的实时能力。