This article tackles the old problem of prediction via a nonparametric transformation model (NTM) in a new Bayesian way. Estimation of NTMs is known challenging due to model unidentifiability though appealing because of its robust prediction capability in survival analysis. Inspired by the uniqueness of the posterior predictive distribution, we achieve efficient prediction via the NTM aforementioned under the Bayesian paradigm. Our strategy is to assign weakly informative priors to nonparametric components rather than identify the model by adding complicated constraints in the existing literature. The Bayesian success pays tribute to i) a subtle cast of NTMs by an exponential transformation for the purpose of compressing spaces of infinite-dimensional parameters to positive quadrants considering non-negativity of the failure time; ii) a newly constructed weakly informative quantile-knots I-splines prior for the recast transformation function together with the Dirichlet process mixture model assigned to the error distribution. In addition, we provide a convenient and precise estimator for the identified parameter component subject to the general unit-norm restriction through posterior modification, enabling effective relative risks. Simulations and applications on real datasets reveal that our method is robust and outperforms the competing methods. An R package BuLTM is available to predict survival curves, estimate relative risks, and facilitate posterior checking.
翻译:本文用新的巴伊西亚方式解决了通过非参数转换模型(NTM)进行预测的旧问题。对NTM的估算之所以具有挑战性,是因为在生存分析方面由于预测能力强而具有吸引力,因此模型的不可识别性是众所周知的。由于后方预测分布的独特性,我们通过巴伊西亚范式下的上述NTM实现有效预测。我们的战略是通过在现有文献中增加复杂的限制,给非参数转换模型分配信息不足的前端分配非参数,而不是确定模型。Bayesian的成功赞扬i)通过指数转换对NTM进行微妙的投影,目的是将无限的参数空间压缩成正方位,同时考虑到失败时间的不增强性;二)在重新推出的转换功能之前,我们新构建了信息不足的微调-knots I-spline;以及分配给错误分布的Drichlet进程混合模型。此外,我们为一般单位-调控点的参数组件提供了方便和精确的NTM的缩略图。通过可比较限制的海图显示的图像和可选的对比的预测方法,使得我们能够对真实的图像进行精确的模型进行精确的预测,使数据进行精确的模型的修改的风险超出。