We develop a technique for transfer learning in machine comprehension (MC) using a novel two-stage synthesis network (SynNet). Given a high-performing MC model in one domain, our technique aims to answer questions about documents in another domain, where we use no labeled data of question-answer pairs. Using the proposed SynNet with a pretrained model from the SQuAD dataset on the challenging NewsQA dataset, we achieve an F1 measure of 44.3% with a single model and 46.6% with an ensemble, approaching performance of in-domain models (F1 measure of 50.0%) and outperforming the out-of-domain baseline of 7.6%, without use of provided annotations.
翻译:我们利用一个新型的两阶段合成网络(SynNet)开发了机器理解(MC)中学习转移技术。 在一个领域,我们的技术以高性能的MC模型为目的,回答另一个领域有关文件的问题,我们没有使用有标签的问答对对口数据。 我们使用从具有挑战性的NewsQA数据集的SQAD数据集中预先培训的模型而提出的SyNet,我们用一个单一模型实现了44.3%的F1计量,用一个共同模型实现了46.6%的F1计量,接近了内部模型的性能(F1计量为50.0%),超过了7.6%的外部基线,而没有使用所提供的说明。