We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input. Existing neural scene representations for solving the NVS problem, such as NeRF, cannot generalize to new scenes and take an excessively long time on training on each new scene from scratch. The other subsequent neural rendering methods based on stereo matching, such as PixelNeRF, SRF and IBRNet are designed to generalize to unseen scenes but suffer from view inconsistency in complex scenes with self-occlusions. To address these issues, our NeuRay method represents every scene by encoding the visibility of rays associated with the input views. This neural representation can efficiently be initialized from depths estimated by external MVS methods, which is able to generalize to new scenes and achieves satisfactory rendering images without any training on the scene. Then, the initialized NeuRay can be further optimized on every scene with little training timing to enforce spatial coherence to ensure view consistency in the presence of severe self-occlusion. Experiments demonstrate that NeuRay can quickly generate high-quality novel view images of unseen scenes with little finetuning and can handle complex scenes with severe self-occlusions which previous methods struggle with.


翻译:我们展示了新的神经代表,称为神经雷(NeuRay),用于以多视图图像作为投入的新视角合成(NVS)任务。现有神经场面代表解决NERF等NVS问题的现有神经场面代表,无法从头开始向新场面概括,在每一个新场面的训练上花费过长的时间。其他随后基于立体匹配的神经转换方法,如PixelNeRF、SRF和IBRNet, 旨在向看不见的场面进行普及,但在复杂的场面上却会遇到自我封闭的不一致现象。为了解决这些问题,我们的NeuRay方法通过将与输入视图相关的射线的可见度编码来代表每个场面。这种神经场面代表可以有效地从外部MVS方法估计的深度开始,这种深度能够向新的场面进行普及,并在没有现场任何培训的情况下实现令人满意的图像传输。随后,初始化的Neuray可以在每个场面上进一步优化优化,只有很少的培训时间使空间协调,以确保在严重自我封闭的场面上看到一致性。实验表明,可以快速地快速地快速地快速地生成高清晰的图像。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月26日
Arxiv
14+阅读 · 2021年3月10日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员