Style transfer aims to rewrite a source text in a different target style while preserving its content. We propose a novel approach to this task that leverages generic resources, and without using any task-specific parallel (source-target) data outperforms existing unsupervised approaches on the two most popular style transfer tasks: formality transfer and polarity swap. In practice, we adopt a multi-step procedure which builds on a generic pre-trained sequence-to-sequence model (BART). First, we strengthen the model's ability to rewrite by further pre-training BART on both an existing collection of generic paraphrases, as well as on synthetic pairs created using a general-purpose lexical resource. Second, through an iterative back-translation approach, we train two models, each in a transfer direction, so that they can provide each other with synthetically generated pairs, dynamically in the training process. Lastly, we let our best reresulting model generate static synthetic pairs to be used in a supervised training regime. Besides methodology and state-of-the-art results, a core contribution of this work is a reflection on the nature of the two tasks we address, and how their differences are highlighted by their response to our approach.
翻译:样式转换的目的是以不同的目标风格重写源文本,同时保留其内容。 我们提议对这项任务采取新的方法,利用通用参数的现有集合以及利用通用词汇资源创建的合成配对,同时不使用任何特定任务平行(源目标)数据,在两种最受欢迎的风格转移任务(形式转移和极地互换)上优于现有不受监督的方法:形式转移和极地互换。在实践中,我们采用一个多步骤程序,以通用的预先培训的序列到序列模式(BART)为基础。首先,我们通过对通用参数的现有集合以及利用通用词汇资源创建的合成配对进行进一步的培训,加强模式重写的能力。第二,通过迭接回翻译方法,我们培训两种模式,每个模式都以转移方向相互提供合成的配对,在培训过程中充满活力。最后,我们让最佳的再定位模型产生静态合成配对,用于监管的培训制度。除了方法和状态结果外,这项工作的核心贡献是反思我们处理两种任务的性质。