The finite models of a universal sentence $\Phi$ in a finite relational signature are the age of a structure if and only if $\Phi$ has the joint embedding property. We prove that the computational problem whether a given universal sentence $\Phi$ has the joint embedding property is undecidable, even if $\Phi$ is additionally Horn and the signature of $\Phi$ only contains relation symbols of arity at most two.
翻译:在有限关系签名中通用判决$\Phi$的有限模式是一个结构的年龄,只要$\Phi$有共同嵌入的财产。 我们证明,一个特定通用判决$\Phi$是否拥有共同嵌入财产的计算问题无法确定,即使$\Phi$是额外的,而$\Phi$的签名最多只包含两个等同关系符号。