Quantum computers hold great promise to enhance machine learning, but their current qubit counts restrict the realisation of this promise. In an attempt to placate this limitation techniques can be applied for evaluating a quantum circuit using a machine with fewer qubits than the circuit naively requires. These techniques work by evaluating many smaller circuits on the smaller machine, that are then combined in a polynomial to replicate the output of the larger machine. This scheme requires more circuit evaluations than are practical for general circuits. However, we investigate the possibility that for certain applications many of these subcircuits are superfluous, and that a much smaller sum is sufficient to estimate the full circuit. We construct a machine learning model that may be capable of approximating the outputs of the larger circuit with much fewer circuit evaluations. We successfully apply our model to the task of digit recognition, using simulated quantum computers much smaller than the data dimension. The model is also applied to the task of approximating a random 10 qubit PQC with simulated access to a 5 qubit computer, even with only relatively modest number of circuits our model provides an accurate approximation of the 10 qubit PQCs output, superior to a neural network attempt. The developed method might be useful for implementing quantum models on larger data throughout the NISQ era.
翻译:量子计算机具有加强机器学习的巨大前景, 但是它们目前的 Qubit 计数限制了这一承诺的实现。 为了试图安抚这种限制技术, 可以使用比天真的电路需要更少的 Qubit 机器来评估量子电路。 这些技术通过评估小机器上的许多较小的电路, 这些小机器上的许多小电路, 这些小机器随后在多元计算机中结合, 复制大机器的输出。 这个方案需要比一般电路更实际的多的电路评估。 但是, 我们调查了以下可能性: 对于某些应用来说, 许多这些子电路是多余的, 并且一个小得多的量子电路足以估计整个电路路路。 我们建造了一个机器学习模型, 能够接近大电路路的输出。 我们成功地运用了我们的模型来完成数字识别任务, 模拟量计算机比数据尺寸要小得多。 这个模型还适用于一个随机的10 Qubit PQC 任务, 模拟访问一台5 Qbit 计算机的可能性, 即使只有相对小的电路数, 足以估计整个电路路路路段。 我们的10 Q 的模型可以精确地将一个10 Q 数据模型用于10 的10 的10 的高级数据输出 。