To successfully negotiate a deal, it is not enough to communicate fluently: pragmatic planning of persuasive negotiation strategies is essential. While modern dialogue agents excel at generating fluent sentences, they still lack pragmatic grounding and cannot reason strategically. We present DialoGraph, a negotiation system that incorporates pragmatic strategies in a negotiation dialogue using graph neural networks. DialoGraph explicitly incorporates dependencies between sequences of strategies to enable improved and interpretable prediction of next optimal strategies, given the dialogue context. Our graph-based method outperforms prior state-of-the-art negotiation models both in the accuracy of strategy/dialogue act prediction and in the quality of downstream dialogue response generation. We qualitatively show further benefits of learned strategy-graphs in providing explicit associations between effective negotiation strategies over the course of the dialogue, leading to interpretable and strategic dialogues.
翻译:为了成功地谈判一项协议,仅仅流畅沟通是不够的:对有说服力的谈判战略进行务实的规划至关重要。现代对话机构虽然在生成流畅的句子方面表现出色,但仍然缺乏务实的基础,无法从战略角度解释。我们介绍了DialoGraph,这是一个利用图形神经网络将务实战略纳入谈判对话的谈判系统。DialoGraph明确结合了战略序列之间的依赖性,以便根据对话的背景,改进和解释对下一个最佳战略的预测。我们基于图表的方法在战略/对话行动预测的准确性以及下游对话回应的质量方面,都比以前最先进的谈判模式更完善。我们从质量上展示了在对话过程中有效谈判战略之间建立明确联系的学习战略图,从而导致可解释和战略对话。