The statistical properties of spectra of quantum systems within the framework of random matrix theory is widely used in many areas of physics. These properties are affected, if two or more sets of spectra are superposed, resulting from the discrete symmetries present in the system. Superposition of spectra of $m$ such circular orthogonal, unitary and symplectic ensembles are studied numerically using higher-order spacing ratios. For given $m$ and the Dyson index $\beta$, the modified index $\beta'$ is tabulated whose nearest neighbor spacing distribution is identical to that of $k$-th order spacing ratio. For the case of $m=2$ ($m=3$) in COE (CUE) a scaling relation between $\beta'$ and $k$ is given. For COE, it is conjectured that for $k=m+1$ ($m\geq2$) and $k=m-3$-th ($m\geq5$) order spacing ratio distribution the $\beta'$ is $m+2$ and $m-4$ respectively. Whereas in the case of CSE, for $k=m+1$ ($m\geq2$) and $k=m-1$-th ($m\geq3$) the $\beta'$ is $2m+3$ and $2(m-2)$ respectively. We also conjecture that for given $m$ ($k$) and $\beta$, the sequence of $\beta'$ as a function of $k$ ($m$) is unique. Strong numerical evidence in support of these results is presented. These results are tested on complex systems like the measured nuclear resonances, quantum chaotic kicked top and spin chains.
翻译:随机矩阵理论框架内量子系统的光谱的统计特性被广泛用于许多物理领域。 如果两组或两组以上的光谱由于系统中存在的离散对称而被超置, 这些特性会受到影响。 使用较高顺序间距比率对光谱进行数字学学研究, 对于给定的美元和Dyson 指数$\beta美元, 修改后的指数$\beta' 美元是制表, 最接近的近邻间距分布与美元顺序间距比率相同。 对于美元=2美元(m=3美元)的情况, 在CEF(CUE) 中, 美元=2美元(m=3美元), 美元和美元。 对于CEF, 美元=1美元+1美元(m) 美元, 美元=美元。 美元=美元=美元。 美元=美元=美元=美元。 美元= 美元=美元=美元=美元=美元。 美元= 美元=美元=美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元。 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元