Model-based control methods for robotic systems such as quadrotors, autonomous driving vehicles and flexible manipulators require motion models that generate accurate predictions of complex nonlinear system dynamics over long periods of time. Temporal Convolutional Networks (TCNs) can be adapted to this challenge by formulating multi-step prediction as a sequence-to-sequence modeling problem. We present End2End-TCN: a fully convolutional architecture that integrates future control inputs to compute multi-step motion predictions in one forward pass. We demonstrate the approach with a thorough analysis of TCN performance for the quadrotor modeling task, which includes an investigation of scaling effects and ablation studies. Ultimately, End2End-TCN provides 55% error reduction over the state of the art in multi-step prediction on an aggressive indoor quadrotor flight dataset. The model yields accurate predictions across 90 timestep horizons over a 900 ms interval.
翻译:以模型为基础的机器人系统控制方法,如二次钻探器、自主驾驶器和灵活的操纵器等,需要有运动模型,对长期复杂的非线性系统动态作出准确的预测。时空进化网络(TCNs)可以通过将多步预测作为序列到序列的模型问题来适应这一挑战。我们介绍了End2End-TCN:一个完全革命性的架构,它将未来的控制投入整合在一起,以计算一个前方的多步移动预测。我们展示了一种方法,即对二次钻探模型任务的TCN性能进行透彻分析,包括调查缩放效应和振动研究。最终,End2End-TCN在具有侵略性的室内二次钻探器飞行数据集的多步预测中,对最新技术进行了55%的误差减少。该模型在900米间隔的90个时序范围内得出准确的预测。