We consider the estimation of the characteristic exponent of the input to a L\'evy-driven storage model. The input process is not directly observed, but rather the workload process is sampled on an equispaced grid. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, the distribution of the estimation errors is asymptotically normal for a high frequency sampling scheme. A resampling scheme that uses the available information in a more efficient manner is suggested and studied via simulation experiments.
翻译:我们考虑对输入L\'evy驱动存储模型的典型指数的估计。 输入过程不是直接观察的, 而是在平空网格上对工作量过程进行抽样。 估计数字依赖于与Laplace- Stieltjes在指数分布的取样时间对工作量进行转换有关的大约时间方程。 估计数字对于任何观察网来说都是非常一致的。 此外,估计错误的分布对于高频取样计划来说是无常的。 以更有效的方式使用现有信息的重新抽样计划是通过模拟实验提出和研究的。