We introduce a general, analytical framework to express and to approximate partial differential equations (PDEs) numerically on graphs and networks of surfaces---generalized by the term hypergraphs. To this end, we consider PDEs on hypergraphs as singular limits of PDEs in networks of thin domains (such as fault planes, pipes, etc.), and we observe that (mixed) hybrid formulations offer useful tools to formulate such PDEs. Thus, our numerical framework is based on hybrid finite element methods (in particular, the class of hybrid discontinuous Galerkin methods).
翻译:我们引入了一个一般性的分析框架,以数字表达和大致表示部分差异方程式(PDEs),这些方程式在图表和图层网络上以数字表示和估计部分差异方程式(PDEs),这些方程式被高精度图和网络所概括。为此,我们认为,高精度图上的PDEs是薄域网络(如断层平面、管道等)中PDEs的单项限制,我们发现(混合的)混合混合配方为制定这种PDEs提供了有用的工具。 因此,我们的数字框架基于混合的有限要素方法(特别是混合不连续的Galerkin方法类别 ) 。