Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I^2$ statistic is the most commonly used measure in the literature. In this paper, we show that the $I^2$ statistic was, in fact, defined as problematic or even completely wrong from the very beginning. To confirm this statement, we first present a motivating example to show that the $I^2$ statistic is heavily dependent on the study sample sizes, and consequently it may yield contradictory results for the amount of heterogeneity. Moreover, by drawing a connection between ANOVA and meta-analysis, the $I^2$ statistic is shown to have, mistakenly, applied the sampling errors of the estimators rather than the variances of the study populations. Inspired by this, we introduce an Intrinsic measure for Quantifying the heterogeneity in meta-analysis, and meanwhile study its statistical properties to clarify why it is superior to the existing measures. We further propose an optimal estimator, referred to as the IQ statistic, for the new measure of heterogeneity that can be readily applied in meta-analysis. Simulations and real data analysis demonstrate that the IQ statistic provides a nearly unbiased estimate of the true heterogeneity and it is also independent of the study sample sizes.


翻译:量化差异性是元分析中的一个重要问题,在现行措施中,2美元统计是文献中最常用的计量标准。在本文中,我们显示,2美元统计事实上从一开始就被定义为问题,甚至完全错误。为了证实这一说法,我们首先提出一个激励性的例子,表明2美元统计严重依赖研究抽样规模,因此,它可能产生差异性数量方面的矛盾结果。此外,通过在ANOVA和元分析之间绘制一个链接,2美元统计显示,错误地应用了估计数字的抽样错误,而不是研究人口的差异。受此启发,我们引入了一个用于量化元分析中差异性的非集中性衡量尺度,同时研究其统计属性,以澄清其为何优于现有计量尺度。我们进一步提出一个最佳的估算尺度,称为IQ统计和元分析,用以进行精确和真实性分析,同时提供真实性分析的精确性数据。

0
下载
关闭预览

相关内容

NeurIPS 20201接收论文列表发布,2334篇论文都在这了!
专知会员服务
37+阅读 · 2021年11月4日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
113+阅读 · 2020年10月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Latent Space Modelling of Hypergraph Data
Arxiv
0+阅读 · 2021年11月2日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
VIP会员
相关VIP内容
NeurIPS 20201接收论文列表发布,2334篇论文都在这了!
专知会员服务
37+阅读 · 2021年11月4日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
113+阅读 · 2020年10月8日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员