Surveys are a crucial tool for understanding public opinion and behavior, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the impact of survey bias, an instance of the Big Data Paradox (Meng 2018). Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults: Delphi-Facebook (about 250,000 responses per week) and Census Household Pulse (about 75,000 per week). By May 2021, Delphi-Facebook overestimated uptake by 17 percentage points and Census Household Pulse by 14, compared to a benchmark from the Centers for Disease Control and Prevention (CDC). Moreover, their large data sizes led to minuscule margins of error on the incorrect estimates. In contrast, an Axios-Ipsos online panel with about 1,000 responses following survey research best practices (AAPOR) provided reliable estimates and uncertainty. We decompose observed error using a recent analytic framework to explain the inaccuracy in the three surveys. We then analyze the implications for vaccine hesitancy and willingness. We show how a survey of 250,000 respondents can produce an estimate of the population mean that is no more accurate than an estimate from a simple random sample of size 10. Our central message is that data quality matters far more than data quantity, and compensating the former with the latter is a mathematically provable losing proposition.


翻译:调查是了解公众舆论和行为的关键工具,其准确性取决于通过尽量减少所有来源的偏差来保持其目标人口的统计代表性。 增加数据规模会缩小信心间隔,但会放大调查偏差的影响,这是大数据帕拉多(Meng 2018 ) 的例子。 这里我们展示了美国成年人首次摄入COVID-19疫苗估计数中的这一悖论:德尔菲-脸书(每周大约250 000份答复)和人口普查家庭肺部(每周约75 000份答复),到2021年5月,德尔菲-脸书(Delphi-Facebook)高估了17个百分点的摄入量和普查家庭脉冲14,而疾病控制和预防中心(疾病控制和预防中心(疾病中心)则有一个基准。 此外,它们巨大的数据规模导致错误估计的偏差很小。 相反,Axios-Ipsos在线小组在调查最佳做法(AAPOR)之后提供了大约1 000份答复,提供了可靠的估计和不确定性。我们用最近的分析性框架来解释三次调查的不准确性。我们随后分析了对疫苗质量调查的影响,我们随后分析了10个调查对疫苗影响的影响,对25万个样本调查的准确性调查的准确性分析,我们没有多少数据做出估计。我们的数据抽样调查的准确性评估。我们如何评估。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员