The statistical methods used to analyze medical data are becoming increasingly complex. Novel statistical methods increasingly rely on simulation studies to assess their validity. Such assessments typically appear in statistical or computational journals, and the methodology is later introduced to the medical community through tutorials. This can be problematic if applied researchers use the methodologies in settings that have not been evaluated. In this paper, we explore a case study of one such method that has become popular in the analysis of coronavirus disease 2019 (COVID-19) data. The integrated nested Laplace approximations (INLA), as implemented in the R-INLA package, approximates the marginal posterior distributions of target parameters that would have been obtained from a fully Bayesian analysis. We seek to answer an important question: Does existing research on the accuracy of INLA's approximations support how researchers are currently using it to analyze COVID-19 data? We identify three limitations to work assessing INLA's accuracy: 1) inconsistent definitions of accuracy, 2) a lack of studies validating how researchers are actually using INLA, and 3) a lack of research into the reproducibility of INLA's output. We explore the practical impact of each limitation with simulation studies based on models and data used in COVID-19 research. Our results suggest existing methods of assessing the accuracy of the INLA technique may not support how COVID-19 researchers are using it. Guided in part by our results, we offer a proposed set of minimum guidelines for researchers using statistical methodologies primarily validated through simulation studies.


翻译:用于分析医疗数据的统计方法正变得越来越复杂。新颖的统计方法越来越依赖模拟研究来评估其有效性。这类评估通常出现在统计学或计算学期刊上,后来通过辅导向医疗界介绍方法。如果应用的研究人员在未经评估的环境下使用方法,这可能会有问题。在本文中,我们探索了在分析2019年科罗纳病毒(COVID-19)数据中流行的一种方法的案例研究。在R-INLA软件包中实施的综合嵌巢式拉普尔近似(INLA),这些评估通常出现在统计学或计算学期刊上,并接近了目标参数的边际外表分布。我们试图回答一个重要问题:关于应用国际实验室的精确性的现有研究是否支持研究人员目前如何使用该方法分析COVI-19数据?我们找出了评估INLA数据的准确性工作中的三个限制:(1) 准确性定义不一致,(2) 缺乏验证研究人员如何实际使用INLA的精确性研究指南,以及(3) 缺乏对使用国际实验室研究所现有数据结果的精确性研究的每一项分析方法的精确性的研究。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2020年10月7日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员