Explaining sophisticated machine-learning based systems is an important issue at the foundations of AI. Recent efforts have shown various methods for providing explanations. These approaches can be broadly divided into two schools: those that provide a local and human interpreatable approximation of a machine learning algorithm, and logical approaches that exactly characterise one aspect of the decision. In this paper we focus upon the second school of exact explanations with a rigorous logical foundation. There is an epistemological problem with these exact methods. While they can furnish complete explanations, such explanations may be too complex for humans to understand or even to write down in human readable form. Interpretability requires epistemically accessible explanations, explanations humans can grasp. Yet what is a sufficiently complete epistemically accessible explanation still needs clarification. We do this here in terms of counterfactuals, following [Wachter et al., 2017]. With counterfactual explanations, many of the assumptions needed to provide a complete explanation are left implicit. To do so, counterfactual explanations exploit the properties of a particular data point or sample, and as such are also local as well as partial explanations. We explore how to move from local partial explanations to what we call complete local explanations and then to global ones. But to preserve accessibility we argue for the need for partiality. This partiality makes it possible to hide explicit biases present in the algorithm that may be injurious or unfair.We investigate how easy it is to uncover these biases in providing complete and fair explanations by exploiting the structure of the set of counterfactuals providing a complete local explanation.
翻译:解释基于机器的复杂系统是AI 的根基。最近的努力显示各种解释方法。这些方法可以大致分为两所学校:这些方法可以提供机器学习算法的局部和人为解释性近似,以及精确描述决定的一个方面的逻辑方法。在本文中,我们侧重于精确解释的第二所学校,并有一个严格的逻辑基础。这些精确方法存在一种认知问题。虽然它们可以提供完整的解释,但这种解释可能太复杂,人类无法理解,甚至无法以人类可读的形式写下来。解释性需要易于理解的解释,人类可以理解。解释性要求具有可理解性的解释。然而,一个足够完整的、具有启发性、可理解性的解释性的解释仍然需要澄清。我们在这里用反事实来做这些解释,在[Wachter 等人, 2017]之后,我们注重确切解释。在反事实的解释中,许多提供完整解释的假设是隐含含蓄的。为了这样做,反事实解释会利用特定数据点或抽样的特性,而这种解释性也是局部的完整,也是局部和局部的反面解释。我们探讨如何从局部解释来保留部分解释,以便保留局部解释。我们提出部分解释,从局部解释,从局部解释。我们要求提出部分解释,从局部解释,要保留部分解释,要保留部分解释,以便提出部分解释,要保留部分解释,以便提出部分解释。我们提出部分解释,从局部解释。我们提出部分解释,要保留部分解释。我们提出部分解释,要保留部分解释,要保留部分解释。我们提出部分解释,要保留部分解释,要保留局部解释,要保留部分解释,以提出部分解释,以提出部分解释,要保留部分解释,以便提出部分解释。我们提出部分解释,要保留部分解释,要保留局部解释,以提出部分解释,要保留可能提出部分解释,要保持局部解释,要保持局部解释,以提出。