In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
翻译:在本文中,我们提出一个地方-全球多尺度方法,在减少基数方法和普遍多尺度的多要素元素法(GMSFEM)的框架内解决高度差异性地下水流动问题。由于对地下水流动问题中特性的描述不完整,使用随机变量来参数化不确定性。因此,需要反复解决这个问题,才能获得统计数量。此外,介质特性通常差异很大,导致需要解决的大型线性系统。因此,寻求一种计算高效的减少模型方法来克服困难是不可避免的。我们将探讨减少基数方法与GMSFEM相结合的情况。特别是,我们将使用残余驱动的基础功能,这是GMSFEM的关键成分。这种本地-全球多尺度方法比单独应用GMSFEM或减少基数法更有效。我们首先建立依赖参数的多尺度基础功能,既包括易感性域的当地和全球信息,然后使用这些基础功能来构建若干全球截图和全球基础功能,以便与不同参数投入的快速在线计算。我们从数字角度对拟议方法进行严格分析,然后用不同的全球尺度的方法进行数字分析。