Neural Machine Translation model is a sequence-to-sequence converter based on neural networks. Existing models use recurrent neural networks to construct both the encoder and decoder modules. In alternative research, the recurrent networks were substituted by convolutional neural networks for capturing the syntactic structure in the input sentence and decreasing the processing time. We incorporate the goodness of both approaches by proposing a convolutional-recurrent encoder for capturing the context information as well as the sequential information from the source sentence. Word embedding and position embedding of the source sentence is performed prior to the convolutional encoding layer which is basically a n-gram feature extractor capturing phrase-level context information. The rectified output of the convolutional encoding layer is added to the original embedding vector, and the sum is normalized by layer normalization. The normalized output is given as a sequential input to the recurrent encoding layer that captures the temporal information in the sequence. For the decoder, we use the attention-based recurrent neural network. Translation task on the German-English dataset verifies the efficacy of the proposed approach from the higher BLEU scores achieved as compared to the state of the art.
翻译:神经机翻译模型是一种基于神经网络的序列到序列转换模型。 现有模型使用经常性神经网络来构建编码器和解码器模块。 在替代研究中, 经常性网络被循环神经网络取代, 以捕捉输入句中的合成结构, 并缩短处理时间。 我们将这两种方法的优点纳入其中, 方法是为捕获上下文信息以及源句的顺序信息推荐一个循环- 经常编码器。 源句的文字嵌入和位置嵌入在源码层之前进行。 源码的文字嵌入和位置嵌入在源码层之前进行, 该编码层基本上是一个 n-g 特征提取器, 捕捉字句级背景环境信息。 变动编码层的校正输出被添加到原始嵌入矢量中, 并随着层的正常化。 正常输出被作为序列中经常性编码层的顺序输入, 捕捉到时间信息。 对于解码器, 我们使用基于注意的经常性神经网络。 将德国- 英国数据设置的翻译任务用于核对从高水平的BEUE分算法方法的功效, 与状态对比。