Self-attention is one of the most successful designs in deep learning, which calculates the similarity of different tokens and reconstructs the feature based on the attention matrix. Originally designed for NLP, self-attention is also popular in computer vision, and can be categorized into pixel-level attention and patch-level attention. In object detection, RoI features can be seen as patches from base feature maps. This paper aims to apply the attention module to RoI features to improve performance. Instead of employing an original self-attention module, we choose the external attention module, a modified self-attention with reduced parameters. With the proposed double head structure and the Positional Encoding module, our method can achieve promising performance in object detection. The comprehensive experiments show that it achieves promising performance, especially in the underwater object detection dataset. The code will be avaiable in: https://github.com/zsyasd/Excavating-RoI-Attention-for-Underwater-Object-Detection
翻译:自留是深层学习中最成功的设计之一,它计算了不同物品的相似性,并重建了基于关注矩阵的特征。最初是为NLP设计的,自留在计算机视觉中也很受欢迎,可以分为像素层面的注意和补丁层面的注意。在物体探测中,可把RoI特征视为基准特征地图上的补丁。本文件的目的是将关注模块应用于RoI特征以改善性能。我们选择的是外部关注模块,而不是使用原始的自留模块。我们选择了外部关注模块,即经过修改的自留模块,但参数减少。在拟议的双头结构和定位编码模块中,我们的方法可以在物体探测中取得有希望的性能。全面实验表明,特别是在水下物体探测数据集中,它能够取得有希望的性能。该代码可以在以下查阅: https://github.com/zsyasd/Excavate-RoI-Restention-frowater-Object-visideovetionionion。