In this work we propose the design principles of a stochastic graph-based model for the simulation of SARS-CoV-2 transmission. The proposed approach incorporates three sub-models, namely, the spatial model, the mobility model, and the propagation model, in order to develop a realistic environment for the study of the properties exhibited by the spread of SARS-CoV-2. The spatial model converts images of real cities taken from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed in order to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne virus considering the transmission parameters of SARS-CoV-2. Finally, we integrate these sub-models in order to derive an integrated framework for the study of the epidemic dynamics exhibited through the transmission of SARS-CoV-2.
翻译:在这项工作中,我们提出了模拟SARS-CoV-2传输的基于随机图象模型的设计原则,提议的方法包括三个子模型,即空间模型、移动模型和传播模型,以便为研究SARS-CoV-2扩散所展示的属性营造一个现实的环境。空间模型将Google地图中真实城市的图像转换成非定向加权图表,以记录下一个用于个人移动的街道的空间安排。流动模型采用了基于随机剂的方法,目的是利用基本图的重量来应用最短路径算法,为在城市中移动的个人指定具体路线。考虑到SARS-CoV-2的传输参数,传播模型采用流行病学模型和空气传播病毒的物理物质。最后,我们将这些子模型综合起来,以便形成一个研究通过SARS-CoV-2传输所显示的流行病动态的综合框架。