The Gaussian mechanism (GM) represents a universally employed tool for achieving differential privacy (DP), and a large body of work has been devoted to its analysis. We argue that the three prevailing interpretations of the GM, namely $(\varepsilon, \delta)$-DP, f-DP and R\'enyi DP can be expressed by using a single parameter $\psi$, which we term the sensitivity index. $\psi$ uniquely characterises the GM and its properties by encapsulating its two fundamental quantities: the sensitivity of the query and the magnitude of the noise perturbation. With strong links to the ROC curve and the hypothesis-testing interpretation of DP, $\psi$ offers the practitioner a powerful method for interpreting, comparing and communicating the privacy guarantees of Gaussian mechanisms.
翻译:高斯机制(GM)是实现差异隐私的一个普遍使用的工具(DP),大量工作用于分析。我们认为,对GM的三种普遍解释,即美元(varepsilon,\delta)美元(DP)、f-DP和R\'enyi DP,可以通过使用一个单项参数($\psi美元)来表达,我们称之为敏感度指数。 $\psi$的独特性使GM及其特性具有两种基本特性:查询的敏感性和噪音扰动的程度。 与ROC曲线和DP的假设测试解释有密切联系,$\psi$为从业者提供了解释、比较和交流高斯机制隐私保障的有力方法。