Scene Graph Generation has gained much attention in computer vision research with the growing demand in image understanding projects like visual question answering, image captioning, self-driving cars, crowd behavior analysis, activity recognition, and more. Scene graph, a visually grounded graphical structure of an image, immensely helps to simplify the image understanding tasks. In this work, we introduced a post-processing algorithm called Geometric Context to understand the visual scenes better geometrically. We use this post-processing algorithm to add and refine the geometric relationships between object pairs to a prior model. We exploit this context by calculating the direction and distance between object pairs. We use Knowledge Embedded Routing Network (KERN) as our baseline model, extend the work with our algorithm, and show comparable results on the recent state-of-the-art algorithms.


翻译:在计算机视觉研究中,Scene Graph Creagenation 引起了人们的极大关注,在视觉问答、图像字幕、自行驾驶汽车、人群行为分析、活动识别等图像理解项目的需求日益增加。 景色图是一个图像的直观图形结构,非常有助于简化图像理解任务。 在这项工作中,我们引入了后处理算法,称为“几何背景”,以更好地了解视觉场景。我们使用后处理算法来增加和完善对对象之间与先前模型的几何关系。我们利用这个背景,计算对象对子之间的方向和距离。我们使用知识嵌入式运行网络(KERN)作为我们的基线模型,扩展我们的算法工作,并展示最新最新算法的可比结果。

1
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月13日
Using Scene Graph Context to Improve Image Generation
Arxiv
6+阅读 · 2018年3月25日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员