Subset weighted-Tempered Gibbs Sampler (wTGS) has been recently introduced by Jankowiak to reduce the computation complexity per MCMC iteration in high-dimensional applications where the exact calculation of the posterior inclusion probabilities (PIP) is not essential. However, the Rao-Backwellized estimator associated with this sampler has a high variance as the ratio between the signal dimension and the number of conditional PIP estimations is large. In this paper, we design a new subset weighted-Tempered Gibbs Sampler (wTGS) where the expected number of computations of conditional PIPs per MCMC iteration can be much smaller than the signal dimension. Different from the subset wTGS and wTGS, our sampler has a variable complexity per MCMC iteration. We provide an upper bound on the variance of an associated Rao-Blackwellized estimator for this sampler at a finite number of iterations, $T$, and show that the variance is $O\big(\big(\frac{P}{S}\big)^2 \frac{\log T}{T}\big)$ for a given dataset where $S$ is the expected number of conditional PIP computations per MCMC iteration. Experiments show that our Rao-Blackwellized estimator can have a smaller variance than its counterpart associated with the subset wTGS.


翻译:最近,Jankowiak 引入子集加权温度调节 Gibbs 抽样器(subset weighted-Tempered Gibbs Sampler, wTGS)来降低在高维应用中每个 MCMC 迭代的计算复杂性,其中精确计算后验包含概率不是必要的。 然而,与该抽样器相关联的 Rao-Blackwellized 估计器的方差较大,因为信号维度与条件 PIP 估计数的比率较大。 在本文中,我们设计了一种新的子集加权温度调节 Gibbs 抽样器,其中每个 MCMC 迭代中条件 PIP 的期望计算数量可以比信号维度小得多。 不同于子集 wTGS 和 wTGS,我们的抽样器具有可变的计算复杂度。 我们为此抽样器的相关 Rao-Blackwellized 估计器在有限次迭代$T$中提供了方差上界,并表明该方差为对于给定数据集, $S$ 是每个 MCMC 迭代中预期条件 PIP 计算数。 实验结果表明,我们的 Rao-Blackwellized 估计器的方差可以比与子集 wTGS 相关的估计器具有更小的方差。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员