The paper describe a new class of capture-recapture models for closed populations when individual covariates are available. The novelty consists in combining a latent class model for capture probabilities where the marginal weights and the conditional distributions given the latent may depend on covariates, with a model for the marginal distribution of the available covariates. In addition, a general formulation for the conditional distributions given the latent and covariates which allows serial dependence is provided. A Fisher scoring algorithm for maximum likelihood estimation is presented, asymptotic results are derived, and a procedure for constructing likelihood based confidence intervals for the population total is presented. Two examples with real data are used to illustrate the proposed approach.


翻译:本文介绍了在个别共同变量存在的情况下对封闭人口采用一种新的捕捉-抓获模式类别,新颖之处在于将潜在概率分类模式结合起来,以便在边际加权值和根据潜在值的有条件分布取决于共同变量的情况下,与现有共同变量的边际分布模式相结合;此外,根据允许串联依赖的潜值和共变值,对有条件分布作了一般表述;提出了用于尽可能估算的渔业评分算法,得出了微值结果,并提出了为人口总数建立基于可能性的信任间隔的程序;还用两个有实际数据的例子来说明拟议方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
109+阅读 · 2020年11月12日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员