This paper introduces Generalized Fourier transform (GFT) that is an extension or the generalization of the Fourier transform (FT). The Unilateral Laplace transform (LT) is observed to be the special case of GFT. GFT, as proposed in this work, contributes significantly to the scholarly literature. There are many salient contribution of this work. Firstly, GFT is applicable to a much larger class of signals, some of which cannot be analyzed with FT and LT. For example, we have shown the applicability of GFT on the polynomially decaying functions and super exponentials. Secondly, we demonstrate the efficacy of GFT in solving the initial value problems (IVPs). Thirdly, the generalization presented for FT is extended for other integral transforms with examples shown for wavelet transform and cosine transform. Likewise, generalized Gamma function is also presented. One interesting application of GFT is the computation of generalized moments, for the otherwise non-finite moments, of any random variable such as the Cauchy random variable. Fourthly, we introduce Fourier scale transform (FST) that utilizes GFT with the topological isomorphism of an exponential map. Lastly, we propose Generalized Discrete-Time Fourier transform (GDTFT). The DTFT and unilateral $z$-transform are shown to be the special cases of the proposed GDTFT. The properties of GFT and GDTFT have also been discussed.
翻译:本文介绍一般化的Fourier变换(GFT),这是Fourier变换(FT)的延伸或一般化。单拉普变换(LT)被认为是GFT(IVPs)的特例。GFT如本文所建议的那样,对学术文献有很大贡献。这项工作有许多显著贡献。首先,GFT适用于一个大得多的信号类别,其中一些无法用FT和LT来分析。例如,我们展示了GFT在多元性衰变功能和超级指数上的适用性。第二,我们展示了GFT在解决初始值问题(IVPs)方面的效力。第三,为FT提出的一般化为其他整体变换,以显示波尔特变换和焦松变的示例。同样,Gamma 也介绍了Gamma的通用功能。GFT是计算任何随机变变数,如Casocial 随机变数变数。第四,我们介绍了利用GFTFTF的变数和GDFTF的单方面变数。最后是GTFTF的变数。GTFTF的GTFTF。GTF。G-G-GTF是GTFTFTFA。GTFTFTF。GTFTFTF。GTFTF的缩图显示显示的缩成。GTF。GTF。GTF。GTFGTF。GTF。GTF。GGGGGGTF。GGGGGTF的图显示的缩式。GTF。GTF。GTF。GTF。GTFTFTF。GTF。GTF。GGTFA。GTFTFA。GTFA。GTFGTFGTFGTFGTFTFTFTFTFGTFTFTFTFA。GTFGTFGTFGTFGTFA。GTFGGGGGGTFA。最后。GTFA。GGGTFA。GGGGGGGGGGFA。GGGGGGGGGGGGG