Traditional urban planning demands urban experts to spend considerable time and effort producing an optimal urban plan under many architectural constraints. The remarkable imaginative ability of deep generative learning provides hope for renovating urban planning. While automated urban planners have been examined, they are constrained because of the following: 1) neglecting human requirements in urban planning; 2) omitting spatial hierarchies in urban planning, and 3) lacking numerous urban plan data samples. To overcome these limitations, we propose a novel, deep, human-instructed urban planner. In the preliminary work, we formulate it into an encoder-decoder paradigm. The encoder is to learn the information distribution of surrounding contexts, human instructions, and land-use configuration. The decoder is to reconstruct the land-use configuration and the associated urban functional zones. The reconstruction procedure will capture the spatial hierarchies between functional zones and spatial grids. Meanwhile, we introduce a variational Gaussian mechanism to mitigate the data sparsity issue. Even though early work has led to good results, the performance of generation is still unstable because the way spatial hierarchies are captured may lead to unclear optimization directions. In this journal version, we propose a cascading deep generative framework based on generative adversarial networks (GANs) to solve this problem, inspired by the workflow of urban experts. In particular, the purpose of the first GAN is to build urban functional zones based on information from human instructions and surrounding contexts. The second GAN will produce the land-use configuration based on the functional zones that have been constructed. Additionally, we provide a conditioning augmentation module to augment data samples. Finally, we conduct extensive experiments to validate the efficacy of our work.
翻译:传统的城市规划要求城市专家花大量时间和精力,在许多建筑限制下制定最佳城市规划。深层基因学习的非凡想象力能力为更新城市规划带来了希望。虽然对自动化城市规划者进行了检查,但由于以下原因受到限制:(1) 城市规划中忽视了人的需求;(2) 城市规划中忽略了空间等级,(3) 缺乏众多城市规划数据样本。为了克服这些限制,我们提议了一个创新的、深层的、人造的城市规划者。在初步工作中,我们将其发展成一个编码脱coder模式。编码器是学习周围环境的信息分布、人类功能性指示和土地使用配置。在对自动化城市规划中,他们受到制约的原因是:(1) 在城市规划中忽略了人力配置;(2) 在城市规划中忽略了空间等级;(3) 在城市规划中忽略了空间等级;同时,我们引入了一种变化式的测量机制,以减轻数据紧张性的问题。尽管早期工作已经取得了良好的结果,但生成的绩效仍然不稳定,因为测量空间等级的方式是测量周围环境、人类功能性指示和土地利用配置配置配置配置配置的配置, 用于重建土地功能性网络的清晰度方向。在G 版本中,我们建议了一个基于基因变动的模型的模型的模型中,我们提出了一种特殊的模型的模型的模型工作。我们提出了一种特殊的模型的模型,我们开始了一种特殊的模型。