Modern change detection (CD) has achieved remarkable success by the powerful discriminative ability of deep convolutions. However, high-resolution remote sensing CD remains challenging due to the complexity of objects in the scene. Objects with the same semantic concept may show distinct spectral behaviors at different times and different spatial locations. Most recent CD pipelines using pure convolutions are still struggling to relate long-range concepts in space-time. Non-local self-attention approaches show promising performance via modeling dense relations among pixels, yet are computationally inefficient. Here, we propose a bitemporal image transformer (BiT) to efficiently and effectively model contexts within the spatial-temporal domain. Our intuition is that the high-level concepts of the change of interest can be represented by a few visual words, i.e., semantic tokens. To achieve this, we express the bitemporal image into a few tokens, and use a transformer encoder to model contexts in the compact token-based space-time. The learned context-rich tokens are then feedback to the pixel-space for refining the original features via a transformer decoder. We incorporate BiT in a deep feature differencing-based CD framework. Extensive experiments on three CD datasets demonstrate the effectiveness and efficiency of the proposed method. Notably, our BiT-based model significantly outperforms the purely convolutional baseline using only 3 times lower computational costs and model parameters. Based on a naive backbone (ResNet18) without sophisticated structures (e.g., FPN, UNet), our model surpasses several state-of-the-art CD methods, including better than two recent attention-based methods in terms of efficiency and accuracy. Our code will be made public.
翻译:现代变化探测(CD)由于深层变异的强力分析能力而取得了显著的成功。 但是,高分辨率遥感(BIT)由于现场物体的复杂性,仍然具有挑战性。 具有相同语义概念的物体可能在不同的时间和不同的空间位置表现出不同的光谱行为。 最近使用纯共变的CD管道仍然难以在空间时间将远程概念联系起来。 非本地的自我注意方法显示通过模拟像素之间密集的关系而表现出有希望的性能,但在计算上却效率低下。 在这里, 我们提议了一个高分辨率图像变异器(BIT), 以便在空间时空域域内高效和有效模拟环境。 我们的直觉是, 具有相同的语义概念可以显示不同频谱的光谱性变化的光谱行为。 为了达到这个目的, 我们用一些标志性图像图像图像图像图像, 并且使用一个变异式的变异的模型来模拟基于基于空间的模型背景环境。 学习到的直基图像将反馈给平面空间空间, 通过一个不使用更深的直径的直径的直径直径直径直径的模型,, 将显示我们的直径直径直径直径直径的底的底的光基的光基的光学模型, 。