Decision-making for self-adaptation approaches need to address different challenges, including the quantification of the uncertainty of events that cannot be foreseen in advance and their effects, and dealing with conflicting objectives that inherently involve multi-objective decision making (e.g., avoiding costs vs. providing reliable service). To enable researchers to evaluate and compare decision-making techniques for self-adaptation, we present the RDMSim exemplar. RDMSim enables researchers to evaluate and compare techniques for decision-making under environmental uncertainty that support self-adaptation. The focus of the exemplar is on the domain problem related to Remote Data Mirroring, which gives opportunity to face the challenges described above. RDMSim provides probe and effector components for easy integration with external adaptation managers, which are associated with decision-making techniques and based on the MAPE-K loop. Specifically, the paper presents (i) RDMSim, a simulator for real-world experimentation, (ii) a set of realistic simulation scenarios that can be used for experimentation and comparison purposes, (iii) data for the sake of comparison.


翻译:自我适应决策方法需要应对不同的挑战,包括量化无法事先预见的事件的不确定性及其影响,并处理必然涉及多目标决策的相互冲突的目标(例如,避免费用与提供可靠的服务),为了使研究人员能够评估和比较自我适应的决策技术,我们介绍了RDMSim示范项目,使研究人员能够评估和比较环境不确定性下的决策技术,支持自我适应。示范项目的重点是与远程数据镜像有关的领域问题,这为面对上述挑战提供了机会。RDMSim项目提供探测和效果要素,便于与外部适应管理人员整合,这些与决策技术有关,并以MAPE-K环路为基础。具体而言,该文件介绍了(一) RDMSim,一个真实世界实验模拟器,(二)一套现实的模拟假设情景,可用于实验和比较目的,(三)为比较目的的数据。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
5G边缘计算的价值机遇
专知会员服务
64+阅读 · 2020年8月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
5G边缘计算的价值机遇
专知会员服务
64+阅读 · 2020年8月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员